BITT POLYTECHNIC

GETLATU, RANCHI

MATHEMATICS

SEMESTER – 1, BRANCH – ME ASSIGNMENT NO – 2 (25 QUESTIONS)

VERY SHORT ANSWERS:

1. DEFINE MATRIX?

- 2. DEFINE ROW MATRIX?
- 3. DEFINE COLUMN MATRIX?
- 4. DEFINE NULL OR ZERO MATRIX?
- 5. DEFINE SQUARE MATRIX?
- 6. DEFINE DIAGONAL MATRIX?
- 7. DEFINE UNIT MATRIX?

8. SOLVE:

4 3

2

5

9. SOLVE:

3	2	8	
5	1	2	
1	0	3	

10. FIND A+B; IF A =
$$\begin{pmatrix} -1 & 2 \\ 3 & 4 \end{pmatrix}$$
 B= $\begin{pmatrix} 3 & -2 \\ 1 & 5 \end{pmatrix}$

SHORT ANSWERS:

- 1. FIND AREA OF TRIANGLE ABC, IF A (3,8), B (-4,2) & C (5,-1).
- 2. FIND AREA OF TRIANGLE PQR, IF P (1,1), Q (-6,-7) & R (-5,-4).
- 3. SHOW THAT THE FOLLOWING POINTS ARE COLLINEAR: A (2,3), B (-1,-2) & C (5,8).
- 4. SHOW THAT THE FOLLOWING POINTS ARE COLLINEAR: M (-2,5), N (-6,-7) & O (-5,-4).
- 5. FIND THE VALUE OF "K" FOR WHICH THE POINTS A (3,-2), B (K,2) & C (8,8) ARE COLLINEAR.
- 6. IF POINTS A (a,0), B (0,b) & C (1,1) ARE COLLINEAR, PROVE THAT: 1/a + 1/b = 1.

7. SOLVE:
$$\begin{vmatrix} \sqrt{3} & \sqrt{5} \\ -\sqrt{5} & 3\sqrt{3} \end{vmatrix}$$

8. SOLVE: $\begin{vmatrix} 6 & -3 & 2 \\ 2 & -1 & 2 \\ -10 & 5 & 2 \end{vmatrix}$
9. PROVE THAT: $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ bc & ca & ab \end{vmatrix} = (a-b)(b-c)(c-a)$
10. PROVE THAT: $\begin{vmatrix} x & y & x+y \\ Y & x+y & x \\ x+y & x & y \end{vmatrix} = -2(x^3+y^3)$

LONG ANSWERS:

1. IF A= $\begin{pmatrix} -1 & -1 \\ 2 & -2 \end{pmatrix}$, SHOW THAT A² + 3A + 4I = 0 & HENCE FIND A⁻¹.

		$\boldsymbol{\mathcal{C}}$		
2.	FIND THE INVERSE OF THE MATRIX A =	3	-10	-1
		-2	8	2
		2	-4	-2

3. BY USING MATRIX METHOD, SOLVE THE SYSTEM OF EQUATION:

4. USING MATRICES, SOLVE THE FOLLOWING SYSTEM OF LINEAR EQUATION:

5. IF A = $\begin{pmatrix} 2 & 1 & 1 \\ 1 & -2 & -1 \\ 0 & 3 & -5 \end{pmatrix}$, FIND A⁻¹.